Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability

نویسندگان

  • Nicole Welsch
  • L Andrew Lyon
چکیده

We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume phase transition mechanism of poly[oligo(ethylene glycol)methacrylate] based thermo-responsive microgels with poly(ionic liquid) cross-linkers.

Thermo-dynamic volume phase transition mechanisms of poly[oligo(ethylene glycol)methacrylate] (POEGMA) based microgels with poly(ionic liquid) (PIL) cross-linking moieties are investigated in detail on the basis of temperature-dependent Fourier transform infrared (FTIR) spectroscopy. The original FTIR data are further analysed by two-dimensional correlation spectroscopy (2Dcos) with the perturb...

متن کامل

Preparation and Characterization of pH-Responsive Poly(methacrylic acid-g-ethylene glycol) Nanospheres

Poly(methacrylic acid-g-ethylene glycol) (P(MAA-g-EG)) has been studied extensively in our laboratory due to its extremely promising applications in the biomedical and pharmaceutical fields. It exhibits pH-responsive interpolymer complexes that make it a promising candidate as an oral carrier for peptide and protein drug. We have developed a photoinitiated free-radical precipitation polymerizat...

متن کامل

Kinetics of Emulsifier-Free Emulsion Polymerization of Methyl Methacrylate

The influences of polymerization temperature, initiator and monomer concentrations, ionic strength of the aqueous phase, as well as ethylene glycol dimethacrylate (EGDM) comonomer, on the kinetics of the emulsifier-free emulsion polymerization of methyl methacrylate (MMA) and on the properties of the resulting poly(methy1 methacrylate) (PMMA) lattices were studied. The polymerizations were carr...

متن کامل

Effect of Some Synthetic Parameters on Size and Polydispersity Index of Gelatin Nanoparticles Cross-Linked by CDI/NHS System

In our previous work, the effect of use of a water soluble CDI/NHS system as nontoxic cross-linking agent on fabrication of gelatin nanoparticles was investigated. In this research, the effect of variation in some synthetic parameters of gelatin nanoparticles cross-linked by CDI/NHS system such as type of gelatin and formulation of cross- linking agent on their size and distribution was examine...

متن کامل

Synthesis and characterization of Polyaniline Nanocomposite by Using Several Types of Surfactants in Aqueous Media

Polyaniline (PANI) nanocomposite has been successfully prepared in aqueousmedia by the chemical polymerization of aniline with ammonium peroxydisulphateas an initiator in the presence of a steric stabilizer such as sodium dodecylbenzenesulfonate(DBSNa), Poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol)(PVA), poly(ethylene glycol) (PEG) and hydroxypropylcellulose (HPC). Thechemical structure, m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017